Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics.
نویسندگان
چکیده
The Golgi apparatus is a membrane-bounded organelle with the characteristic shape of a series of stacked flat cisternae. During mitosis in mammalian cells, the Golgi apparatus is once fragmented into small vesicles and then reassembled to form the characteristic shape again in each daughter cell. The mechanism and details of the reassembly process remain elusive. Here, by the physical simulation of a coarse-grained membrane model, we reconstructed the three-dimensional morphological dynamics of the Golgi reassembly process. Considering the stability of the interphase Golgi shape, we introduce two hypothetical mechanisms-the Golgi rim stabilizer protein and curvature-dependent restriction on membrane fusion-into the general biomembrane model. We show that the characteristic Golgi shape is spontaneously organized from the assembly of vesicles by proper tuning of the two additional mechanisms, i.e., the Golgi reassembly process is modeled as self-organization. We also demonstrate that the fine Golgi shape forms via a balance of three reaction speeds: vesicle aggregation, membrane fusion, and shape relaxation. Moreover, the membrane fusion activity decreases thickness and the number of stacked cisternae of the emerging shapes.
منابع مشابه
Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly
In mammalian cells, the inheritance of the Golgi apparatus into the daughter cells during each cycle of cell division is mediated by a disassembly and reassembly process, and this process is precisely controlled by phosphorylation and ubiquitination. VCIP135 (valosin-containing protein p97/p47 complex-interacting protein, p135), a deubiquitinating enzyme required for p97/p47-mediated postmitoti...
متن کاملA Role for Clathrin in Reassembly of the Golgi Apparatus□D
The Golgi apparatus is a highly dynamic organelle whose organization is maintained by a proteinaceous matrix, cytoskeletal components, and inositol phospholipids. In mammalian cells, disassembly of the organelle occurs reversibly at the onset of mitosis and irreversibly during apoptosis. Several pharmacological agents including nocodazole, brefeldin A (BFA), and primary alcohols (1-butanol) ind...
متن کاملGolgi biogenesis.
The Golgi is an essential membrane-bound organelle in the secretary pathway of eukaryotic cells. In mammalian cells, the Golgi stacks are integrated into a continuous perinuclear ribbon, which poses a challenge for the daughter cells to inherit this membrane organelle during cell division. To facilitate proper partitioning, the mammalian Golgi ribbon is disassembled into vesicles in early mitos...
متن کاملPhosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle.
The Golgi apparatus in mammalian cells consists of stacks that are often laterally linked into a ribbon-like structure. During cell division, the Golgi disassembles into tubulovesicular structures in the early stages of mitosis and reforms in the two daughter cells by the end of mitosis. Valosin-containing protein p97-p47 complex-interacting protein, p135 (VCIP135), an essential factor involved...
متن کاملCapacity of the golgi apparatus for biogenesis from the endoplasmic reticulum.
It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. U...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 20 شماره
صفحات -
تاریخ انتشار 2017